今のところ理想に近いものが見当たらないようなので,「AI時代の高性能計算入門」の執筆を開始することにした。といいながらWebで下書きしながらだし,他の急ぎの仕事もあるので,それが終わってから,暇を見つけての仕事になるから,気が付いたら尻切れトンボになる可能性もある。とはいえ,次年度(2026年度)中には終わらせておかないと,2027年からの卒研開始に間に合わなず,ゼミ資料が皆無の状態で始めるのは不味いので,2026年夏休みぐらいにはある程度の完成度には持っていきたい。
ここで言う「AI時代」には二つの意味がある。一つは,あらゆる計算資源が生成AIに象徴される深層学習(deep learning)に動員されるようになってしまい,CPUもGPUも計算リソースを低精度浮動小数点(FP)演算強化にフォーカスした進化を遂げるようになってしまったことである。このため,今までは倍精度FP演算(binary64)を標準として使っていた多くの科学技術計算の性能向上のためには,低精度FP演算を高精度にするためのテクニックが必要で,我が従事してきた多倍長精度演算技法が不可欠となった。当然,深層学習そのものを利用するにしても,低精度FP演算能力を生かすための工夫が必要であることは言うまでもない。つまり,利用用途に応じた可変長精度(variable-precision)演算技法が求められるようになったということである。
もう一つの意味は,生成AIによってあらゆる人間の知的活動が下支えされるようになったことである。その中でも,多彩なソフトウェアを構築するためのプログラミング技法は,かなりの部分,AIによる助力が期待できるようになった。もちろん,完璧なプログラムを作るにはいささか心もとないところがあり,プロンプト(指示文)による詳細な指示も必要な上,現状では人間によるチェックが欠かせない。「高性能計算(high performance computing)」は,与えられた計算環境の性能を最大限発揮するための技法を追求する学問であるから,AIの助力を得て作成したソフトウェアの性能を評価する方法についてもしっかり学ぶ必要がある。
以上,2点の需要を満たした最適なテキストは,2026年現在存在しない。今までの知見を総合し,かつ,自分の所有するNote PCでも可能なプログラミングやベンチマークテストを行えるような自主学習テキストが,今の時代は不可欠である。古くても重要な数値計算や低レイヤーに関連する話題も,PyTorchやTensorFlowといった深層学習ツールを使った演習も含め,「AI時代」に相応しい「高性能計算」の入門用テキストを目指し,本blogに記事を積み重ねていきたいと考えている。
2026年1月25日(日) 駿府城下の自宅にて
幸谷智紀
